skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Mestav, Kursat Rasim"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The problem of state estimation for unobservable distribution systems is considered. A deep learning approach to Bayesian state estimation is proposed for real-time applications. The proposed technique consists of distribution learning of stochastic power injection, a Monte Carlo technique for the training of a deep neural network for state estimation, and a Bayesian bad-data detection and filtering algorithm. Structural characteristics of the deep neural networks are investigated. Simulations illustrate the accuracy of Bayesian state estimation for unobservable systems and demonstrate the benefit of employing a deep neural network. Numerical results show the robustness of Bayesian state estimation against modeling and estimation errors and the presence of bad and missing data. Comparing with pseudo-measurement techniques, direct Bayesian state estimation via deep learning neural network outperforms existing benchmarks. 
    more » « less